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We experimentally and theoretically investigate the dynamics of inhibitory coupled self-driven
oscillators on a star network in which a single central hub node is connected to k peripheral arm nodes.
The system consists of water-in-oil Belousov-Zhabotinsky ∼100 μm emulsion drops contained in storage
wells etched in silicon wafers. We observed three dynamical attractors by varying the number of arms in the
star graph and the coupling strength: (i) unlocked, uncorrelated phase shifts between all oscillators;
(ii) locked, arm hubs synchronized in phase with a k-dependent phase shift between the arm and central
hub; and (iii) center silent, a central hub stopped oscillating and the arm hubs oscillated without synchrony.
We compare experiment to theory. For case (ii), we identified a logarithmic dependence of the phase shift
on star degree, and were able to discriminate between contributions to the phase shift arising from star
topology and oscillator chemistry.
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Discrete networks of self-driven oscillators represent a
broad class of physical systems [1–11]. Here we focus on
an important goal of oscillator network research: to identify
how (i) individual oscillator’s dynamics, (ii) network
topology, and (iii) coupling type conspire to create emer-
gent spatiotemporal patterns in the form of steady phase
relationships between oscillators. Addressing this funda-
mental goal has motivated the development of controlled
experimental systems that operate with varying degrees
of autonomy [12–20]. In this study we employ a model
experimental system consisting of a microfluidically
assembled discrete network of Belousov-Zhabotinsky
(BZ) chemical oscillators and compare the results with
both a discrete reaction-diffusion (RD) network model and
phase model.
The theoretical foundation of the BZ reaction is well

established enabling near-quantitative modeling of both
isolated and coupled oscillators. The novelty of this study
arises from our ability to vary the topology and internodal
coupling of the network, and to parallelize experiments
through microfluidic fabrication techniques [18,19]. We
examine inhibitory coupling, which promotes symmetry-
breaking phenomena by preferring a π-phase shift between
neighbors [16,19,21–25]. We arrange the cells in a network
with star topology, consisting of a central hub node
connected by k arms to other nodes, as illustrated in
Fig. 1, and show how dynamics predictably depart from
this simple antiphase synchrony by varying k. Star net-
works have been considered in theoretical [26] and exper-
imental studies on electronic networks [27], but never in
natural systems. Star networks are an important naturally

occurring motif in neural networks that perform cognitive
[28–30] and sensorial functions [31], but living neural
networks have too many unknown parameters to enable
disentangling the roles of oscillator dynamics and network
topology on emergent behavior.

i

...

i+1

k

1
i=0

(a) (b)

etched
silicon

aq. BZ
oil-filled
channel

(c)

100 µm

0

1

2

3

ox
id

iz
ed

ca
ta

ly
st

 z
 [m

M
]

/2

0.2

0.4

0.6

in
te

ns
ity

 [a
.u

.]

0 0.5 1 1.5 2
time [ks]

/2

0-
i

0-
i

phase difference

experiment discrete network model

0 0.5 1 1.5 2
time [ks]

(d) (e)

FIG. 1. (a) Schematic of inhibitory-coupled star network of
degree k. (b) Schematic of experimental setup: BZ aqueous
drops are stored in circular wells etched in a silicon wafer and
separated by fluorinated oil. (c) Reflection microscopy images of
loaded star networks with different numbers of arms and arm
lengths; movies S1–S8 in Ref. [32], (d) and (e) Time trace of
droplet intensity and corresponding evolution of arm node phase
relative to hub node showing phase locking for experiment
(movie S2 [32]) and point model simulation [Eq. (1)].
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Notably, our BZ system uses RD processes to produce
the oscillator dynamics, star network topology and inhibi-
tory coupling. Thus the dynamics belong to the class of
natural physical-chemical phenomena, in contrast to other
dynamical systems in which the oscillators, coupling, or
both are mediated through electronic hardware [1,2,20,27,
33–35]. Our system therefore demonstrates the potential for
creating stand-alone soft materials designed to generate
specific self-organized spatiotemporal patterns. Speci-
fically, we seek the engineering principles that control
the phase relationship between coupled oscillators. An
application of such materials is to make autonomous, soft
robots that run purely on chemicals like living organisms,
rather than powered by motors and controlled by com-
puters. In this scenario, the BZ network would function as a
central pattern generator found in the nervous system of
many animals [19].
We probe the dynamical states of the system as a function

of internodal coupling strength and star degree, thereby
focusing on the impact of physical changes to the star
network while taking the BZ chemistry as a known in our
experiments and models. We compare observations to two
levels of theory: a discrete RD model with Vanag-Epstein
[21] chemical dynamics taking place at each node and a
phasemodel constructed from the discretemodel thatwe use
to examine the topology dependence of locking angles.
Strikingly, we observe that the locking angle between the

cluster formed by synchronized arm nodes and the hub
node deviates from perfect antiphase synchrony with a
logarithmic dependence on k. The phase model predicts
that the prefactor for this dependence depends only on the
interaction function and can therefore be numerically
derived for any oscillator from a model or an experimen-
tally acquired phase response curve [36]. This result
disentangles oscillator and coupling physics from topo-
logical effects by compactly showing how each come
together to produce topology-dependent phase locking.
Since the star graph’s cyclic symmetry is responsible for
coarsening the system into two clusters, our result will
generalize to other networks that can be similarly coarsened
by identifying group orbits [1].
Experimental system.—Surfactant stabilized emulsions

of 100 micron diameter drops containing the aqueous BZ
solution were generated in a fluorinated oil [37]. A drop of
the concentrated emulsion was pipetted onto the etched
silicon wafer, a cover glass was laid on top and clamped
together, thereby squeezing the BZ drops into the etched
network and sealing the device. Each wafer contained
hundreds of star networks. The design concept was to make
a device that was quick to load, intolerant to failure, and
reusable. Typically 90% of the networks fail to load
correctly. However, 10–20 successes are enough to accu-
mulate statistics. Both the silicon and glass are completely
impermeable to all chemical species ensuring that each
arm drop only communicates with the hub drop [18].

The cavities containing the BZ drops are connected with
channels designed to be too narrow to house drops, but
contain oil, and therefore function as diffusive conduits,
Fig. 1(b). The BZ reaction oscillates between a reduced and
oxidized state of the catalyst. The duration of the oxidized,
or activated state, is brief and during this interval a large
amount of the inhibitor, bromine, is also generated. The
inhibitory coupling between two drops is provided by
bromine, which due to its low polarizability readily
partitions into the oil [16]. All the chemicals, their con-
centrations, and conditions for producing the emulsion are
described in the Supplemental Material [32].
Theory and model.—In a RD network consisting of

i ¼ 1 � � �N nodes and m ¼ 1 � � �M species, the dynamics
of the concentration cmi are governed by

_cmi ¼ Fm
i ðciÞ þ

XN
j¼1

μmijAijðcmj − cmi Þ; ð1Þ

where Fm
i ðciÞ models intranodal reactions given by the

Vanag-Epstein model of BZ chemistry [21] and the second
term captures internodal diffusive transport proportional to
the species-dependent coefficient μmij; full expressions are
found in the Supplemental Material [32]. This model
assumes that all the chemistry occurs at discrete points;
i.e., it ignores concentration gradients within a drop. The
point approximation is justified because the width of the
oxidation front in the BZ reaction is larger than the size of
the droplets; thus each reactor oxidizes uniformly.
Modeling the coupling as linearly proportional to the

concentration difference between connected nodes is equiv-
alent to ignoring any chemical reactions and accumulation
of chemicals in the oil separating drops, which is justified
when the interdrop gap is much less than the diffusion
length scale l ∼

ffiffiffiffiffiffiffi
DT

p
, where D is the diffusivity of

bromine in oil and the timescale is given by the oscillation
period T [16–18]. We consider gaps no greater than 60 μm.
With diffusivityD ∼Oð10−9Þ m2 s−1 and oscillation period
T ∼Oð102Þ s, the diffusion length scale is l ∼ 300 μm;
thus we are safely in the quasisteady regime. Network
connectivity is given by the adjacency matrix A such that
Aij ¼ 1 if i and j are connected andAij ¼ 0 otherwise. We
restrict our attention to the dynamics of Eq. (1) on star
graphs with k arm nodes, Fig. 1(a).
We additionally employ the method of phase-reduction

to create a further-simplified model of the phase-locked
dynamics [32,38,39]. The approach assumes that the state
of an isolated multivariable chemical oscillator with limit-
cycle dynamics can be fully described with a single phase
variable. For weakly coupled oscillators, the slow dynamics
of the network, obtained by averaging over one oscillation
period, take the form _Φi ¼ ωþP

N
j¼1 AijHijðΦjiÞ, where

Φi and _Φi are the phase and instantaneous frequency of the
ith oscillator, respectively, ω is the frequency of an isolated
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oscillator (assumed to be identical for all oscillators),Φji ¼
Φj −Φi is the phase difference between two oscillators,
and Hij is a numerically calculated interaction function
describing how the instantaneous frequency of oscillator i
is changed by the presence of oscillator j, derived from
Eq. (1) and shown in Fig. 2 [40]. We model oscillator
interactions as occurring entirely through diffusive trans-
port of the inhibitory species bromine; oscillator i is
delayed by oscillator j for nearly all Φij, with the largest
delay occurring just before oscillator i is about to undergo a
transition from the reduced to oxidized state. Experimental
conditions are chosen to be consistent with the model
[16,17].
State diagram.—We observed three dynamical attractors

as a function of the number of arms in a star graph and the
coupling strength (Fig. 3). The states are (i) unlocked
(movie S5), unsynchronized oscillations of all nodes,
(ii) locked (movies S2–S4 [32]), arm hubs synchronized
in phase with a k-dependent phase shift between the arm
and central hub, and (iii) center silent (movie S6 [32]), a
nonoscillating, or intermittently oscillating central hub and
unsynchronized oscillations of all arm hubs. Using photo-
chemical inhibition, we are also able to change state
dynamically by manipulating topology. Shining strong
light on a node inhibits oscillation, effectively pruning
that node from the network. We induced a transition from
center silent to locked in a 5-arm star by shining light on
two arms, effectively transforming the network to a 3-arm
star while leaving the coupling constant unchanged. We
also induced a transition from locked to unlocked by
shining light on the hub of a 3-arm star, as shown in movies
S7–S8 and Fig. S2 in the Supplemental Material [32].
In Fig. 3, experiment and theory are compared. When

the coupling strength is low (large drop separation), the

unlocked state is observed. A network is considered
unlocked if a steady-state locking angle is not achieved
during the experiment, for theory, we examine a time
window commensurate with experiments corresponding to
∼20 oscillations. For moderate star degree, as one increases
the coupling strength, phase locking is observed. Further
increases to the coupling strength result in center-silent
dynamics. For large star degree unlocking proceeds directly
to center silent. Conversely, as star degree is lowered, the
coupling strength range over which phase locking occurs
broadens. An analytic expression for the diffusive rate μ
[s−1] is presented in the Supplemental Material; we expect
μ to be inversely proportional to the drop separation and to
the volume of the receiving drop [32].
In order to match the theory-predicted state diagram with

the experiment we introduced normally distributed varia-
tions of 7.5% in Hþ, this created a distribution in oscillation
periods 223� 13 s (∼13%); previous observations find 5%
variation in intrinsic frequency but also found the need
to increase heterogeneity in simulations for good agree-
ment [23]. We ran each parameter combination (k and μ)
20 times, resampling the variation in chemistry and initial
conditions each time. We also introduced a coupling
strength reduction (fudge) factor f ¼ 0.15 to modify the
predicted μ. Heterogeneity is needed to both destroy
synchrony when coupling is weak [10] and move the
transition from locked to center silent to lower k. Phase
diagrams showing theoretical predictions without these
modifications are shown in the Supplemental Material,
Fig. S4 [32].
Variations in parameters are justified because the inner,

aqueous phase is composed of two reactant streams;
fluctuations in flow rates can therefore produce droplets
of varying composition and size. For simplicity, we con-
sider chemical heterogeneity alone. The reduction of the
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FIG. 2. Interaction function normalized by coupling strength
Hij=μ (thick blue line) describes how oscillator i’s phase changes
due to the presence of oscillator j as a function of the phase
difference between them Φij ¼ Φi −Φj [40]. G=ðkμÞ describes
how the phase difference along the k-arm-synchronized manifold
Φ1 ¼ Φ2 ¼ � � � ¼ Φk evolves as a function of the phase differ-
ence between the two clusters, Φ0a (thin lines) [Eq. (2)].
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effective coupling coefficient has been noted previously
[23]. These results indicate our idealized model is quali-
tatively, but not quantitatively, correct and further, that
system heterogeneity is an important parameter.
Steady state locking angles and phase model.—The

phase interaction function Hij, assuming only bromine
transport between oscillators, is nearly completely negative
meaning that coupled oscillators mutually delay one
another, Fig. 2 (bold curve). This produces a steady state
phase shift between two oscillators, at the maximum phase
difference of π, Fig. 2 (k ¼ 1 curve). Within the phase-
locked regime, we experimentally observe that as the
number of arms increases, the delay between when the
hub and arm nodes oxidize decreases, Figs. 1(d) and 1(e)
and Fig. 4(a). We examine this dependence using the
numerically constructed phase model.
Since all solutions exhibit arm-locked dynamics, a

consequence of the arms forming a single orbit of the star
network’s graph [1], we examine the dynamics along the

arm-synchronized manifold Φ1 ¼ Φ2 ¼ � � � ¼ Φk and
reduce the system to a single degree of freedom Φ0a ¼
Φ0 −Φa with arm-synchronized cluster a and hub 0. The
dynamics of this quotient network are described by

_Φ0a ¼ kH0að−Φ0aÞ −Ha0ðΦ0aÞ ¼ GðΦ0aÞ: ð2Þ

Examining arm-synchronized dynamics of N oscillators is
equivalent to considering a heterogeneous pair: a node
containing a single unit of volume V and a large node of
volume kV diffusively coupled through a conduit with k
times the cross sectional area A of the connections in the
original network, inset of Fig. 4(c). This volume difference
manifests as an asymmetric coupling constant μ0a ¼ kμa0.
We report the system dynamics for various k rescaled by
the coupling strength and star degree G=ðkμÞ so that as k
becomes large the plotted amplitude of the dynamics does
not grow as well, Fig. 2.
The system’s locking angles are readily given by the

fixed points GðΦ�
0aÞ ¼ 0 with stability determined by G0

(< 0 stable, > 0 unstable). The results show that for two
equally sized nodes, there are four fixed points, two of
which are stable Φ�

0a ¼ 0; π. However, the basin of attrac-
tion associated with Φ�

0a ¼ 0 is so small, it is not visible in
Fig. 2(b). In contrast, the basin for Φ�

0a ¼ π is larger and
deeper and therefore more accessible and robust against
differences in the intrinsic frequencies of the wells, as seen
experimentally [37,41].
The phase model predicts that as the volume ratio

increases from unity, the hub oscillator is more delayed
by the collective action of the arm cluster, shifting Φ�

0a,
Fig. 4. As the volume ratio increases, the fixed point
continues to move until the volume ratio reaches 1∶33.8
where a saddle-node bifurcation eliminates the attractor,
leaving Φ�

0a ¼ 0 as the only attractor, black line in Fig. 4.
These predictions compare favorably to experiment, and

the full chemical model without heterogeneity, Fig. 4. In the
limit of weak coupling strength, assumed by the creation of
the phase model, the locking angle is μ independent. As
coupling strength is increased in the point model, predic-
tions diverge with k more rapidly. Additionally, for strong
coupling (μ ¼ 0.1–0.5 s−1) the system transitions to center
silent while for weaker coupling (μ ¼ 0.01–0.03 s−1) the
system instead transitions to in-phase synchrony as pre-
dicted by the phase model. Heterogeneity introduced into
the model Eq. (1) to reproduce the phase boundaries in
Fig. 3 does not change the overall dependence of locking
angle on star degree, squares in Fig. 4.
In the limit of weak coupling, Φ�

0a − π ∝ − log k, Fig. 4.
While physically k ∈ N for our system, more generally, k
represents the volume ratio between two diffusively
coupled oscillators and can take on any positive value.
We anticipate logarithmic scaling because the deviation
from π should change sign, but not magnitude upon
relabeling the quotient graph, which is equivalent to
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inverting the volume ratio logðkÞ ¼ − log ð1=kÞ. To iden-
tify the prefactor, we perform a regular perturbation
expansion of the locking angle with logðkÞ as the expansion
variable, with details provided in the Supplemental
Material [32]. The expansion approximates the location
of the attractor of Eq. (2) according to the scaling law

Φ�
0a ¼ π þ logðkÞ 1

2
H0aðΦa0Þ

�
dH0a

dΦa0

�
−1
����
Φa0¼π

; ð3Þ

which compares well to the phase model up to log k ∼Oð1Þ.
We emphasize that in the weak-coupling-limit Φ�

0a is μ
independent and the comparison between theory and experi-

ment involves zero free parameters. The first term,Φ�ð0Þ
0a ¼ π,

arises from symmetry and is agnostic to oscillator chemistry
and network topology. In contrast, the next order correction
encodes information specific to both. Information about the
chemical reactions enters through the oscillator’s phase
response curve and coupling to adjacent oscillators through
H, while information about network topology enters through
log k. We note that while networks of repulsively coupled
oscillators have been modeled simply as negatively coupled
Kuramoto oscillators _Φi ¼

P
N
j¼1 Aij sin ðΦj −ΦiÞ [42,43],

our result shows explicitly that becauseHðπÞ ¼ sinðπÞ ¼ 0,
sine coupling does not predict the observed topology depend-
ence for branching networks.
Discussion and conclusion.—In this Letter we show how

the coupling strength and topology of an inhibitor-coupled
BZ RD star network controls transitions between distinct
dynamic states. We demonstrate that the high-dimensional
RD system of the star network, consisting of ðkþ 1Þ ×M
variables [Eq. (1)], can be reduced to a low-dimensional
phase model of k variables and further simplified to a one-
dimensional model using the cyclic symmetry of the star
graph. Equation (3) explicitly separates topological effects
fromchemical dynamics and is therefore readily transferable
to other oscillator networks. Further, we anticipate that the
symmetry-based simplification we employed will general-
ize to other graphs with orbits originating from cyclic
symmetries. While more complex networks generally har-
bor additional attractors, we speculate that a phase locking
attractor with logarithmic dependence on size ratiowill exist
in cases of unequal cluster size. We expect this to hold even
as symmetry-breaking bifurcations break up orbit-generated
clusters into smaller synchronized populations. Previous
work examining the relationship between dynamics and
topology identified conditions for synchronized clusters [1];
here, we obtain a tractable dynamical relationship between
clusters of different sizes. Since symmetry-based reductions
require identical oscillators it is noteworthy that we observe
topology-dependent dynamics to be robust against exper-
imental imperfections. These results demonstrate the utility
of model experimental RD systems for both testing theories
of network dynamics and providing engineering principles
for dynamic soft materials.
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