Cross polarization compatible dialysis chip†

Micha Kornreich,‡a Michael Heymann,‡b§c Seth Fraden*c and Roy Beck*a

We visualize birefringence in microliter sample volumes using a microfluidic dialysis chip optimized for cross polarization microscopy. The chip is composed of two overlapping polydimethylsiloxane (PDMS) channels separated by a commercial cellulose ester membrane. Buffer exchange in the sample chamber is achieved within minutes by dialyzing under continuous reservoir flow. Using fd virus as a birefringent model system, we monitor the fd virus isotropic to liquid crystal phase transition as a function of ionic strength. We show that the reorientation of the fd virus spans a few tens of seconds, indicative of fast ion exchange across the membrane. Complete phase separation reorganization takes minutes to hours as it involves diffusive virus mass transport within the storage chamber.

Introduction

Birefringence measurements are widely applied in medical diagnostics and biomaterial research, as they are non-destructive, non-intrusive methods that can provide long-range structural information. For example, in ex vivo tissue examination, they are used to monitor myocardial regeneration and to assess thermal injury in cardiac muscle. Congo Red-stained amyloid fibrils and plaques, like those associated with Alzheimer’s disease, are birefringent. Medical diagnostic uses also include a definitive diagnosis of gout, through identification of monosodium urate crystals in synovial fluid under polarized light microscopy; sperm head characterization or the selection of reacted spermatooza for intra-cytoplasmic sperm injection; and optical measurement of nerve thickness for the early detection of glaucoma.

Cross polarization microscopy is widely used to characterize crystals and liquid crystals in crystallization assays and when mapping phase diagrams of organic and biological samples or, for example, to monitor the assembly of DNA origami phases. In such experiments, several variables like temperature, pH, sample concentrations, ionic strength and other neutral osmolytes are usually probed. To accurately determine phase boundaries, repeated sampling is necessary. Yet, biological samples such as tissue preparations or purified proteins are often precious.

A microfluidic dialysis method, which is compatible with cross polarization microscopy, can overcome the constraints of the small sample quantities available and the need for repeated sampling. Microfluidic devices with filtration membranes of different pore sizes provide reversible control over buffer composition, by exchanging desired solutes based on their molecular weight. The incorporation of custom and commercial membranes is common and several alternatives are available. Such membrane chips have already been used to study phase transitions. Also, many spectroscopic and microscopic methods were successfully integrated with microfluidic devices in general, including optical tweezers, fluorescence microscopy, Raman spectroscopy, dynamic and static light scattering, various optical sensors and X-ray diffraction and imaging. However, the combination of dialysis with cross polarization microscopy is challenging because dialysis membranes are usually highly birefringent themselves. Even when the membrane source material is not polarising, the final membrane can become polarising when stress-induced birefringence is ‘frozen-in’ during manufacturing or due to anisotropic elasticity of the membrane.

In this paper, we describe and validate a cross-polarization compatible microfluidic dialysis device using the filamentous bacteriophage fd as a model system. Our device allows us to combine birefringent-based analysis and diagnostic methods with the microfluidic advantages of small sample consumption and fast assay rates, which we found to be on the order of minutes. By choosing the appropriate molecular weight cut-off, it is easy to exchange buffer without diluting the stored sample. This allows the efficient study of phase transitions, like crystallization and gelation. Multiple buffer conditions may be tested on a single sample by repeatedly...
exchanging the reservoir buffer without loading a new sample if the transition is reversible, as was the case with our \textit{fd} virus model system. Samples that aggregate upon buffer exchange, such as amyloids, may be pre-loaded in their soluble form to then dialyze the assembly buffer into the sample chamber.

Dialysis chip design, fabrication and validation

Choice of materials

To build a microfluidic dialysis chamber compatible with polarization microscopy, all of its components must be transparent and at the most have a birefringence smaller than that of the sample investigated. While glass and PDMS are transparent and not birefringent, most commercial dialysis membranes are either opaque or highly birefringent. From all tested membranes, we found cellulose ester (CE) membranes to be transparent and to have a low birefringence, as measured by a Berek compensator on an Olympus BX51 polarisation microscope (ESI† table). Commercial CE membranes are also comparably thin (60 μm), which minimizes diffusion times between sample and reservoir channels, an important feature for time-resolved experiments. Another advantage of the CE membrane is the wide range of available pore sizes. Pore sizes spanning from nanofiltration to microfiltration cut-offs, as well as low protein binding CE membranes, allow for versatile uses in materials and biological sciences.

Chip fabrication

We assembled a device from separate, detachable components, such that the membrane is contained between the two microfluidic chip halves, one for sample storage and the other one for reservoir perfusion22 (Fig. 1). Thin 350 μm PDMS slabs (Sylgard 184, Dow Corning) containing the features were fabricated using standard soft lithography23 and mounted between 1 mm thick glass slides that were clamped together using acrylic plates and screws. The membrane was mechanically compressed between the two PDMS halves, which covered the entire membrane surface. The glass support allowed for a minimum working distance of 1.4 mm. The PDMS reservoir layer had 200 μm wide channels shaped into a serpentine spaced 350 μm apart to facilitate fast buffer exchange by maximising the accessible membrane while also offering mechanical support to minimize channel collapse and bending (Fig. 1b). The second PDMS layer for sample storage was separated from the first one by the 60 μm thick CE membrane. Two sample storage channels were 200 μm deep, 1000 μm wide and 5000 μm long. The total volume for each storage channel was thus 1 μL. The PDMS slabs and supporting microscope glass slides were held in place and gently clamped together using acrylic plates (McMaster Carr) cut to shape with a 40 W CO\textsubscript{2} laser cutter (Hobby Laser, Full Spectrum Laser) and fastened manually using screws. Since the acrylic plastic is birefringent, windows of 2 by 2 cm were cut out on the top and bottom plates for polarized light to go through unperturbed.

The device is modular and can therefore be disassembled, cleaned and reused multiple times. The chip was leak free for many days, as verified by a concentrated myoglobin (Sigma-Aldrich) solution (Fig. 1b). When assembled with a membrane larger than the PDMS slabs, the protruding membrane ends were wetted, but no protein diffusion was observed.

Sample loading

The chip was loaded using an injection loop and fluorophilic oil to minimize sample consumption, as detailed in Fig. S1.† The chip was placed on the rotating stage of an Olympus BX51 cross-polarizing microscope. Time-lapse images were taken by an AVT Marlin firewire color camera (Allied Vision Technologies) for the duration of each experiment.

On-chip dialysis

Hydrostatic pressure-driven flow was used to control on-chip dialysis (Fig. 1c). It was chosen to prevent pressure from building up inside the chip uncontrollably, as can be the case when operating microfluidic devices under constant flow with syringe pumps. This is important, because water can be pushed through the dialysis membrane against a concentration gradient in a process known as reverse osmosis. For example, in initial experiments performed under constant flow, a storage channel, initially filled with oil only, nucleated aqueous “puddles” growing on the membrane. This was most likely due to water being pushed from the reservoir across the membrane into the storage layer. To prevent such “leakage” from the reservoir into the storage layer, we performed control experiments to determine the vial positions...
crystal phase equilibration before introducing a new salt condition to probe the next point in the phase diagram.

A transition from a single nematic phase to two distinct nematic and isotropic phases was observed at 120 mM NaCl, in agreement with previous bulk results. The transition occurred gradually over an hour, with smooth nematic lines slowly being broken into granular-looking smaller nematic elliptic domains (Fig. 2f, inset). This transition was reversible and the single nematic state was restored upon reducing the present salt concentration to below 100 mM NaCl and waiting a few hours for complete re-equilibration.

While the equilibrium phases were reproducible regardless of previous NaCl concentrations, the phase transition kinetics and domain sizes depended strongly on sample history. Nevertheless, transition kinetics could be divided into two distinct categories: fast, of duration of several minutes, and slow, hour-long transitions. When changing salt between any two concentrations within the range of 0 to 100 mM NaCl, the virus liquid crystal re-equilibrated within minutes of the buffer change (Fig. 2a–d). Transitions involving salt concentrations exceeding 120 mM NaCl required a few hours to re-equilibrate (Fig. 2e–f). For example, increasing salt from 0 to 280 mM NaCl resulted initially in a rapid deformation of nematic domains which caused a substantial decrease in the cross-polarized light intensity (Fig. S2†), followed by a slow, hour-long transition to isotropic–nematic coexistence. The latter slow dynamic phase transition gave rise to re-illuminated cross-polarized light intensity. Furthermore, this coexistence regime was composed of *circa* 30 μm long nematic tactoids of elliptical shape that were surrounded by large areas of isotropic order (Fig. 2f). Similarly, equilibration took several hours after the salt concentration had been lowered from 280 mM to below 120 mM NaCl to drive the transition from the two-phase isotropic–nematic coexistence back to the single nematic phase. However, in this case, no rapid initial response was observed.

It should be noted that the observed hour-long transition cannot be attributed to ion diffusion. The diffusion coefficient of NaCl is approximately *1.5 × 10*-5 m2·s⁻¹ for 0 to 280 mM NaCl concentration in water and is unaffected by the *fd* virus phase. Since channel height is 200 μm and membrane thickness is 60 μm, complete buffer exchange should occur within a few minutes.

As mentioned previously, we observed immediate domain deformation upon increasing salt concentration (Fig. S2c, d†). For the nematic phase, present as a single phase in the 0–100 mM NaCl range, tilting the device with respect to the light path showed that dark surfaces were actually nematic domains with an optical axis parallel to the objective. As the nematic phase is uniaxial, a sample with a direction normal to the image plane will extinguish light under cross polarizers. This demonstrates that the rapid decrease in light intensity observed with increasing NaCl concentrations in the nematic phase (Fig. 2a–d) is explained by *fd* virus reorientation. An optical axis perpendicular to the light path (and parallel to the chamber walls) was favored in low salt concentrations (Fig. 2h), while the optic axis is perpendicular to the sample walls at high concentrations.
Nematic alignment also depended on sample history, as the longest domains were obtained by exchanging from the highest 280 mM NaCl salt concentration directly to 0 mM NaCl. The 280 mM salt isotropic–nematic solution was homogeneously dotted with tactoids (Fig. 2f) and upon the direct exchange to 0 mM NaCl transformed over hours into large nematic domains of two major groups. Nematic domains near the channel walls had their optical axis vertical to the channel side faces, while nematic domains parallel to the channel’s length were formed at the center of the channel (Fig. 2g, j). The parallel domains were over 1 mm long and comparable to channel length (5 mm).

Because all observed phase transitions were reversible, a given fd virus concentration could be loaded once into the chip and then be sequentially probed with multiple salt conditions. In our case, a typical experiment lasted for 3 days, in which about 8 different salt concentrations were tested multiple times against the same virus sample. This strategy allows for the complete phase diagram to be obtained quickly while also being able to characterize phase transition dynamics or hysteresis. Due to its modular design, we could reuse the dialysis devices multiple times. After an experiment, the chip was easily disassembled, washed and reassembled with a fresh membrane. Although we did not observe an agglomeration of either myoglobin or fresh membrane. Although we did not observe an agglomeration of either myoglobin or fresh membrane. Although we did not observe an agglomeration of either myoglobin or fresh membrane.

Conclusions

We developed a microfluidic device for microliter sample loading and buffer dialysis, compatible with polarization microscopy. We successfully observed a phase transition controlled by buffer exchange through a dialysis membrane integrated in the device. The design is relatively easy to implement for a variety of time-resolved experiments and creates new opportunities where sample quantities are limited and multiple environmental conditions (e.g. ionic strength, osmolytes, denaturants, pH, and enzymes) need to be accurately controlled and altered. Our chip is modular, easy to fabricate and to operate and reusable. In addition, we demonstrated the applicability of the device using microliter amounts of fd virus as a model system. Our results show time scale separation between fast nematic director reorientation and slow phase separation (nematic–isotropic) involving mass transport. Similar behavior was seen when driving the isotropic–nematic transition using magnetic fields or shear flow.

The advantage of the membrane microfluidic device is that fd virus phase transition boundary can be sampled multiple times using a single specimen, allowing accurate determination of phase boundaries and phase transition hysteresis.

Acknowledgements

We are grateful to Mark Zakhary and Zvonimir Dogic for kindly providing the fd viruses. We thank Eti Malka-Gibor for her advice and for preparing birefringent samples used for trial runs of the device. RB acknowledges financial support from the Israeli Science Foundation (grant 571/11), the European Community’s 7th Framework Programme (CIG-293402) and the Tel Aviv University Center for Nanoscience and Nanotechnology. MK acknowledges support from Bronfman Philanthropies funded Brandeis-Israel Research Collaborations and the Tel Aviv University Center for Nanoscience and Nanotechnology scholarship. SF acknowledges financial support from the Brandeis NSF MRSEC (grant 0820492).

References

18 F. Destremaut, J. B. Salmon, L. Qi and J. P. Chapel, Lab Chip, 2009, 9, 3289–3296.
26 Due to the small free energy difference between nematic and cholesteric phases in relation to the large energy difference between isotropic and nematic phases, we also refer to the cholesteric phase as nematic in this article.